Antimicrobial activity of exometabolites of Paenibacillus polymyxa, isolated from endophytic community of winter wheat grain

Authors

DOI:

https://doi.org/10.31548/dopovidi2022.01.005

Keywords:

phytopathogens, Paenibacillus polymyxa, endophyte, exometabolites, antibacterial action

Abstract

In preliminary studies, a strain Paenibacillus polymyxa P6 possessing multiple plant growth-promoting (phosphate solubilization, oligonitrotrophy and production of heteroauxins) and antagonistic activities was isolated from grain-resided cultivable bacterial endophytic community of winter wheat variety of the domestic selection Podolyanka with increased resistance to the causative agent of basal bacteriosis of grain crops Pseudomonas syringae pv. atrofaciens. The aim of this work was to study the antimicrobial effect of the exometabolites, produced by isolated strain, towards gram-negative phytopathogenic microorganisms using the method of deferred antagonism under the condition of cultivating the antagonistsc bacterium for 72 and 120 hours before inoculation of test cultures. Microorganisms stored in the collection of the D.K. Zabolotny Institute of Microbiology and Virology, NAS of Ukraine: Ralstonia solanocearum B-1109, Pectobacterium carotovora subsp. carotovora B-1077, Pseudomonas syringae pv. syringae B-1022, Pseudomonas syringae pv. syringae van Hall 1902 B-1027, Pseudomonas syringae pv. atrofaciens B-1011, Pseudomonas syringae pv. atrofaciens B-1013, as well as Erwinia amylovora ATCC 15580 were used as a test-cultures. Paenibacillus polymyxa P6 exometabolites were found to have a dose-dependent antimicrobial effect towards all studied microorganisms. The most pronounced inhibitory effect was registered against Erwinia amylovora ATCC 15580, Pseudomonas syringae pv. syringae B-1022 and Ralstonia solanocearum B-1109: the diameter of the zone of no growth under the action of exometabolites produced for 120 hours are 25.72 ± 4.0 mm, 22.93 ± 2.0 mm and 20.30 ± 4.0 respectively. These results substantiate the expediency of further investigation of the composition and biological activity of the studied exometabolites in the perspective of developing biotechnological preparations.

References

Rana, KL, Kour D, Kaur T, Sheikh I, Yadav AN, Kumar V, Suman A, Dhaliwal H S. (2020). Endophytic Microbes from Diverse Wheat Genotypes and Their Potential Biotechnological Applications in Plant Growth Promotion and Nutrient Uptake. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci., 90, 1-11. https://doi.org/10.1007/s40011-020-01168-0.

Herrera, D., Grossi, C., Zawoznik, M., Groppa, M.D. (2016) Wheat seeds harbour bacterial endophytes with potential as plant growth promoters and biocontrol agents of Fusarium graminearum. Microbiol. Res. 186, 37–43. https://doi.org/10.1016/j.micres.2016.03.00

Shahzad, R.; Khan, A.L.; Bilal, S.; Asaf, S.; Lee, Y.J. (2018).What is there in seeds? Vertically transmitted endophytic resources for sustainable improvement in plant growth. Front. Plant Sci., 9, 24. https://doi.org/10.1016/j.micres.2016.03.00.

Shade, A., Jacques, M.A.; Barret, M. (2017). Ecological patterns of seed microbiome diversity, transmission, and assembly. Curr. Opin. Microbiol. 37, 15–22. https://doi.org/10.1016/j.mib.2017.03.010.

Papik, J., Folkmanova, M., Polivkova-Majorova, M., Suman, J., Uhlik, O. (2020). The invisible life inside plants: Deciphering the riddles of endophytic bacterial diversity. Biotechnology Advances, 44, 107614. https://doi.org/10.1016/j.biotechadv.2020.107614.

Karthikeyan, G., Rajendran, L., Sendhilvel, V., Prabakar, K., Raguchander, T. (2021) 22 - Diversity and functions of secondary metabolites secreted by epi-endophytic microbes and their interaction with phytopathogens, Editor(s): Sudisha Jogaiah, Biocontrol Agents and Secondary Metabolites, Woodhead Publishing, 495-517.

Ek-Ramos, M.J., Gomez-Flores, R., Orozco-Flores, A.A., Rodríguez-Padilla, C., González-Ochoa, G., and Tamez-Guerra, P. (2019) Bioactive Products From Plant-Endophytic Gram-Positive Bacteria. Front. Microbiol., 10, 463. https://doi.org/10.3389/fmicb.2019.00463.

Deng, Y., Zhu, Y., Wang, P., Zhu, L., Zheng, J., Li, R., et al. (2011). Complete genome sequence of Bacillus subtilis BSn5, an endophytic bacterium of Amorphophallus konjac with antimicrobial activity for the plant pathogen Erwinia carotovora subsp. Carotovora. J. Bacteriol., 193, 2070–2071. https://doi.org/10.1128/JB.00129-11.

Cazorla, F. M., Romero, D., Pérez-García, A., Lugtenberg, B. J. J., Vicente, A. D., and Bloemberg, G. (2007). Isolation and characterization of antagonistic Bacillus subtilis strains from the avocado rhizoplane displaying biocontrol activity. J. Appl. Microbiol., 103, 1950–1959.https://doi.org/10.1111/j.1365-2672.2007.03433.x.

Compant, S., Cambon, M.C., Vacher, C., Mitter, B., Samad, A. & Sessitsch, A. (2020) The plant endosphere world—Bacterial life within plants. Environmental Microbiology, 23, 1812–1829. https://doi.org/10.1111/1462-2920.15240.

Kuźniar, A., Włodarczyk, K., Grządziel, J., Woźniak, M., Furtak, K., Gałązka, A., Dziadczyk, E., Skórzyńska-Polit, E. & Wolińska, A (2020). New Insight into the Composition of Wheat Seed Microbiota. International journal of molecular sciences, 21(13), 4634. https://doi.org/10.3390/ijms21134634.

Pastoshchuk, A., Yumyna, Y., P Zelena, Nudha, V., Yanovska V., Kovalenko, M., Taran, N., Patyka V., Skivka, L. (2021). Beneficial traits of grain-resided endophytic communities in wheat with different sensitivity to Pseudomonas syringae. Regulatory Mechanisms in Biosystems., 12(3), 498-505. https://doi.org/10.15421/022168.

Egorov, I.,S. (2004). Fundamentals of the doctrine of antibiotics: Textbook. 6th ed., Reworked. MSU Publishing House; Science, P.528. (in Ukrainian)

Guzhvinskaya, S. O. (2018). Determination of antagonistic and adhesive properties of lactobacilli and bifidobacterial. Mikrobiol. Z, 80(1),36-44. (in Ukrainian). https://doi.org/10.15407/microbiolj80.01.036.

Eldeen, I.,M.,S.(2014). Isolation of 12 bacterial endophytes from some mangrove plants and determination of antimicrobial properties of the isolates and the plant extracts. International Journal of Phytomedicine, 6(3), 425-432;

Klein JM, Stockwell VO, Minsavage GV, Vallad GE, Goss EM, Jones JB. (2020). Improved deferred antagonism technique for detecting antibiosis. Lett Appl Microbiol, 71(4), 330-336. https://doi.org/10.1094/PHYTO-09-20-0402-R.

Shvets, M.,V. (2017). Enterobacter nimipressuralis-associated bacteria in the pathology of bacterial edema Vetula pendula Roth. Scientific Bulletin of NLTU of Ukraine. 27 (3), 66-70. (in Ukrainian).

Aitken, G. (2004). A New Approach to Conservation: The Importance of the Individual throughWildlife Rehabilitation. London: Routledge, 218 p.

Dudeja, S.,S, Suneja-Madan, P., Paul, M., Maheswari, R., Kothe, E. (2021). Bacterial endophytes: Molecular interactions with their hosts. J Basic Microbiol., 61(6), 475-505. https://doi.org/10.1101/2022.01.04.474905.

Tripathi, V. C., Satish, S., Horam, S., Raj, S., Arockiaraj, J., Pasupuleti, M., et al. (2018). Natural products from polar organisms: structural diversity, bioactivities and potential pharmaceutical applications. Polar Sci., 18, 147–166. https://doi.org/10.1016/j.polar.2018.04.006.

Compant, S., Cambon, M. C., Vacher, C., Mitter, B., Samad, A. & Sessitsch, A. (2020) The plant endosphere world – bacterial life within plants. Environmental Microbiology, 23, 1812–1829. https://doi.org/10.1111/1462-2920.15240.

Jimenez Madrid, A. M., Klass, T., Roman-Reyna, V., Jacobs, J., & Lewis Ivey, M. L. (2021). Draft Genome Sequences of Four Streptomycin-Sensitive Erwinia amylovora Strains Isolated from Commercial Apple Orchards in Ohio. Microbiology resource announcements, 10(50), e0089321. https://doi.org/10.1128/MRA.00893-21.

Dagher, F., Olishevska, S., Philion, V., Zheng, J., & Déziel, E. (2020). Development of a novel biological control agent targeting the phytopathogen Erwinia amylovora. Heliyon, 6(10), e05222. https://doi.org/10.1016/j.heliyon.2020.e05222.

Arab, M., Ahani Azari, A. (2020). Antagonistic potential of rhizospheric and endophytic bacteria against Fire blight, caused by Erwinia amylovora. International Journal of Molecular and Clinical Microbiology, 10(2), 1331-1338.

Paudel, S., Dobhal, S., Alvarez, A. M., & Arif, M. (2020). Taxonomy and Phylogenetic Research on Ralstonia solanacearum Species Complex: A Complex Pathogen with Extraordinary Economic Consequences. Pathogens (Basel, Switzerland), 9(11), 886. https://doi.org/10.3390/pathogens9110886.

Mamphogoro, T.,P, Kamutando, C.N., Maboko, M.M., Aiyegoro, O.A., Babalola, O.O. (2021). Epiphytic Bacteria from Sweet Pepper Antagonistic In Vitro to Ralstonia solanacearum BD 261, a Causative Agent of Bacterial Wilt. Microorganisms, 9(9),1947. https://doi.org/10.3390/microorganisms9091947.

Wang, X., Liang, G. (20214). Control efficacy of an endophytic Bacillus amyloliquefaciens strain BZ6-1 against peanut bacterial Wilt, Ralstonia solanacearum. Biomed Res Int., 2014, 465435. https://doi.org/10.1155/2014/465435.

Wu, H.P., Derilo, R.C., Chen, H.L., Li, T.R., Chan, Y.C., Chuang,Y., Chuang, D.Y. (2021).Injectisome T3SS subunits as potential chaperones in the extracellular export of Pectobacterium carotovorum subsp. carotovorum bacteriocins Carocin S1 and Carocin S3 secreted via flagellar T3SS. BMC Microbiol., 21(1), 345.

Padilla-Gálvez, N., Luengo-Uribe, P., Mancilla, S., Maurin, A., Torres, C., Ruiz, P., France, A., Acuña, I., Urrutia, H. (2021). Antagonistic activity of endophytic actinobacteria from native potatoes (Solanum tuberosum subsp. tuberosum L.) against Pectobacterium carotovorum subsp. carotovorum and Pectobacterium atrosepticum. BMC Microbiol, 21(1), 335. https://doi.org/10.1186/s12866-021-02393-x.

Gutiérrez-Barranquero, J.A., Cazorla, F.M., de Vicente, A. (2019). Pseudomonas syringae pv. syringae Associated With Mango Trees, a Particular Pathogen Within the "Hodgepodge" of the Pseudomonas syringae Complex. Front Plant Sci, 10:570. https://doi.org/10.3389/fpls.2019.00570.

Butsenko, L., M. (2019). Genomodulatory activity of Pseudomonas syringae pv. syrіngae and P. syringae pv. atrofaciens. Bioresources and nature management.11(3-4), 25-31. (in Ukrainian). https://doi.org/10.31548/bio2019.03.003.

Eltokhy, M., A, Saad, B.,T, Eltayeb, W.,N, Yahia, I.,S, Aboshanab, K.,M, Ashour, M.,S.,E. (2021). Exploring the Nature of the Antimicrobial Metabolites Produced by Paenibacillus ehimensis Soil Isolate MZ921932 Using a Metagenomic Nanopore Sequencing Coupled with LC-Mass Analysis. Antibiotics (Basel), 11(1), 12. https://doi.org/10.3390/antibiotics11010012.

Hong, C., E, Kwon, S., Y, Park, J., M. (2016). Biocontrol activity of Paenibacillus polymyxa AC-1 against Pseudomonas syringae and its interaction with Arabidopsis thaliana. Microbiol Res., 185, 13-21. https://doi.org/10.1016/j.micres.2016.01.004

Liu, Y., Wang, R., Cao, Y. et al. (2016). Identification and antagonistic activity of endophytic bacterial strain Paenibacillus sp. 5 L8 isolated from the seeds of maize (Zea mays L., Jingke 968). Ann Microbiol., 66, 653–660. https://doi.org/10.1007/s13213-015-1150-x.

Jeong, H., Choi, S.,K, Ryu, C.,M, Park, S.,H. (2019). Chronicle of a Soil Bacterium: Paenibacillus polymyxa E681 as a Tiny Guardian of Plant and Human Health. Front Microbiol., 10, 467. https://doi.org/10.3389/fmicb.2019.00467.

Published

2022-02-28

Issue

Section

Biology, biotechnology, ecology