Ergonomic aspects of material separation process modeling on stationary screw surfaces
DOI:
https://doi.org/10.31548/energiya2021.05.086Abstract
The motion of material particles on gravitational surfaces, ie the motion of particles on surfaces under the action of its own weight, is used in special devices for their separation by physical and mechanical properties. For this purpose stationary screw surfaces of a steady step are applied.
A number of papers have now considered the relationship between the kinematic parameters of motion, the coefficient of friction and the design parameters of the separator, when its surface is a deployable helicoid.
The purpose of the study is to investigate helical surfaces with different design parameters in order to improve their separation ability through mathematical and geometric modeling of the process without making surface models.
The problem of finding the trajectory of a material particle on the surface under the action of its own weight is preceded by the problem of finding the trajectory on an inclined plane. If a material particle with a certain initial velocity vо and a certain angle of inclination to the horizon falls on an inclined plane, it will move along a certain curve (in the absence of friction and air resistance, the trajectory will be a parabola).
A system of equations is obtained, which describes the motion of a material point on the gravitational surface in the general case. If it is created for a specific surface, nonlinear and numerical methods must be used to integrate it. Modern software products allow not only to find the trajectory of the particle, but also to show it on the surface and even make an animation that essentially replaces high-speed shooting. This approach makes it possible to study the kinematic parameters of motion on different helical surfaces without full-scale samples of these surfaces, which significantly reduces the cost of finding the right surfaces.
The motion of particles along a helical conoid and a deployable helicoid is considered. Simulation of the motion of a material particle on helical surfaces and its study by modern means of numerical integration and visualization have shown that for different surfaces the nature of the motion of the particle will also be different. When moving on the surface of the helical conoid, the particle in the presence of friction first accelerates, and then stops at a considerable distance from its axis. To prevent this, you need to take a limited compartment of the conoid both in height and on its periphery. When a particle moves on the surface of a deployed helicoid, its velocity becomes constant over time, and the trajectory after that will be a helical line.
Key words: particle motion, helical surfaces, helical conoid, deployable helicoid, simulation
References
Anikin, M. F., Ivanov, V. D., Pevzner, M. L. (1970). Vintovyye separatory dlya obogashcheniya rud [Screw separators for ore beneficiation]. Moskow: Nedra, 184.
Zaika, P. M., Maznev, G. E. (1978). Separatsiya semyan po kompleksu fiziko-mekhanicheskikh svoystv [Separation of seeds by a complex of physical and mechanical properties]. Moskow: Kolos, 287.
Zaika, P. M. (1992). Izbrannyye zadachi zemledel′cheskoy mekhaniki [Selected tasks of agricultural mechanics]. Kyiv: Izd-vo USKHA, 507.
Sysoyev, N. I. (1949). Teoreticheskiye osnovy i raschet sortirovki "Zmeyka" [Theoretical foundations and calculation of the " Zmeyka " sorting]. Sel′khozmashiny, 8, 5 - 8.
Voitiuk, D. H., Pylypaka, S. F. (2003). Znakhodzhennia traiektorii rukhu materialnoi tochky po hravitatsiinii rozghortnii poverkhni na prykladi rozghortnoho helikoida [Finding the trajectory of a material point on a gravitational unfolding surface on the example of an unfolding helicoid]. Mekhanizatsiia i enerhetyka silskoho hospodarstva. IV mizhnarodna naukovo-tekhnichna konferentsiia MOTROL-2003. Kyiv: NAU, 6, 113-126.
Voitiuk, D. H., Pylypaka, S. F. (2002). Znakhodzhennia traiektorii rukhu materialnoi chastynky po hravitatsiinykh liniichatykh poverkhniakh iz horyzontalnymy tvirnymy [Finding the trajectory of a material particle on gravitational linear surfaces with horizontal generators]. Zbirnyk naukovykh prats NAU "Mekhanizatsiia silskohospodarskoho vyrobnytstva", 12, 58-69.
Downloads
Published
Issue
Section
License
Relationship between right holders and users shall be governed by the terms of the license Creative Commons Attribution – non-commercial – Distribution On Same Conditions 4.0 international (CC BY-NC-SA 4.0):https://creativecommons.org/licenses/by-nc-sa/4.0/deed.uk
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).