Neural network prediction of leakage current based on the theory of time series forecasting
DOI:
https://doi.org/10.31548/energiya2022.04.086Abstract
Among the modern electrotechnical means of monitoring the state insulation electric motors are devices for monitoring the magnitude the leakage current, which reflects the current state insulation electric motor. The use of more sophisticated devices that not only fix the dangerous value the leakage current by turning off the electric motor, but also predict the possibility of reaching a dangerous value the leakage current make it possible to inform the service personnel about the possible danger, reduce the time for simple equipment during the technological process due to the possibility of early maintenance, replacement or repair of electric motors during a technological pause, even before they fail. Neural networks, used for predicting the reliability electric motors, are mainly performed as mathematical models of parallel calculations, which have in their composition simple processing elements that interact with each other and are called artificial neurons. Non-linearity of neural networks allows establishing non-linear dependencies between future and actual values of processes. Other important advantages are scalability - the parallel structure of artificial neural networks accelerates calculations, which is extremely relevant on an industrial scale, when it is necessary to process terabytes of data.
The neural network created on the basis the theory of time series forecasting is a technological suitability test for predicting the leakage current of an electric motor. The synthesized neural network can be the basis for creating a system for predicting the leakage currents of electric motors based on the theory of time series forecasting. The forecasting system includes a neural network based on the theory of time series, means of measuring the leakage current of electric motors and a database. The key decision for the developed system is made by a person.
Key words: leakage current, theory of time series forecasting, neural network
References
Gerasymenko, V., Kozyrskyi, V., Maiborodina, N., Kovalov, O. (2019). Mathematical Model Changing the Value of the Process of Leakage Current in 0.38 kV Networks. Modern Development Paths of Agricultural Production. Trends and Innovations. Cham: Springer International Publishing, 339 – 348.
Gerasymenko, V. P. (2020). Aparatno-prohramna realizatsiia intelektualnoi komp’iuterno-intehrovanoi systemy kontroliu ta prohnozuvannia velychyny strumu vytoku elektroobladnannia tvarynnytskoho prymishchennia. [Hardware and software implementation of intelligent computer-integrated control system and prediction of leakage current of electrical equipment of livestock premises]. Enerhetyka i avtomatyka, 2, 77 – 85.
Lysenko, V. P., Zayets, N. A. Shtepa, V. M., Dudnyk, A. O. (2011). Neiromerezheve prognozuvannia chasovih riadiv temperaturi navkolishniogo prirodnogo seredovishcha [Neural network forecasting of time series of external temperature], Bioresursy і pryrodokorystuvannia, №3 – 4, 102 – 108.
Gerasymenko, V. P. (2020). Intelektualna systema kontroliu ta prohnozuvannia velychyny strumu vytoku elektroobladnannia ustanovok dlia teplovoi obrobky i sushinnia zernovoi masy [Intelligent control system and prediction of the amount of leakage current of electrical equipment for heat treatment and drying of grain mass]. Enerhetyka i avtomatyka, 6, 109 – 117.
Zagirnyak, M., Prus, V., Somka, O. (2015). Reliability Models of Electric Machines with Structural Defects Proceedigs 2015 16th International Conference on “Computational Problems of Electrical Engineering”
CPEE – 2015. Lviv, 249-251.
Kondratenko, I. P., Zaiets, N. A., Shtepa, V. M. (2020). Naukovi osnovy keruvannia elektrotekhnichnymy kompleksamy neperervnykh vyrobnytstv iz prohnozuvanniam neshtatnykh sytuatsii: monohrafyia [Scientific bases of management of electrotechnical complexes of continuous productions with forecasting of abnormal situations: monograph]. Kyiv: Printeko, 256.
Feinberg E. A and Dora Genethlio. Load Forecasting. Chapter 12, 269 – 285.
Lysenko. V. P., Reshetiuk, V. M., Shtepa, V. M., Zaiets, N. A. (2014). Systemy shtuchnoho intelektu: nechitka lohika, neironni merezhi, nechitki neironni merezhi, henetychnyi alhorytm [Artificial intelligence systems: fuzzy logic, neural networks, fuzzy neural networks, genetic algorithm]. Kyiv, 336.
Downloads
Published
Issue
Section
License
Relationship between right holders and users shall be governed by the terms of the license Creative Commons Attribution – non-commercial – Distribution On Same Conditions 4.0 international (CC BY-NC-SA 4.0):https://creativecommons.org/licenses/by-nc-sa/4.0/deed.uk
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).